目的 研究真空环境中电场、微重力场、局部电荷场以及磨屑颗粒间的弹性碰撞场协同作用下空间导电滑环磨屑颗粒的迁移与堆积行为,为揭示其失效机理及提升在轨服役性能提供理论支撑。方法 基于电场理论和物质输运方程,建立稳态电场磨屑迁移运动仿真模型,并通过磨屑在轨迁移试验对模型进行验证。同时,利用COMSOL平台系统建立多物理场模型,分析不同电压(100~600 V)、微重力(1×10‒4~9×10‒4 m2/s)、带电荷量(100e~600e)对磨屑颗粒迁移路径与堆积分布的影响。结果 磨屑主要向绝缘挡边区域富集,约62.68%的颗粒最终堆积于挡边表面。电压升高显著增强电场驱动力,导致颗粒迁移速度加快,堆积位置发生偏移。在较低微重力环境下,颗粒迁移能力增强,表现出明显上浮趋势,而在较高微重力下堆积集中于挡边下侧。电荷量变化对迁移影响显著,尤其在Q=400e和Q=600e时形成局部高堆积区。结论 电压、微重力与电荷量对磨屑迁移行为具有协同约束作用,在低电压和高微重力的条件下更易形成非均匀堆积区。研究揭示了典型空间环境下磨屑迁移与富集的主导机制,可为导电滑环工况参数优化与在轨可靠性提升提供理论支持。
Abstract
The work aims to explore the migration and accumulation behavior of wear debris particles in space-grade conductive slip rings under Electromechanical Multiphysics Coupling in vacuum conditions, thereby uncovering the mechanisms underlying their failure and offering theoretical insights to enhance their in-orbit operational reliability. A steady-state electrostatic migration model for wear debris was established based on the electrostatic field theory and mass transport equations, and the simulation results were further validated through on-orbit debris migration experiments. Meanwhile, the COMSOL Multiphysics platform was applied to establish a multi-physics model, a systematic investigation was conducted to examine the effects of applied voltage (100 V-600 V), microgravity levels (1×10‒4 m2/s-9×10‒4 m2/s), and particle charge (100e-600e) on the migration trajectories and accumulation patterns of debris particles. Debris predominantly accumulated near insulating barriers, with approximately 62.68% of particles ultimately heaping up barrier surfaces. Increased voltage significantly enhanced electric field driving forces, accelerating particle migration and altering accumulation positions. Under low microgravity, particles showed signs of enhanced migration capability and a pronounced upward trend, whereas under high microgravity conditions they accumulated on the lower side of barriers. The difference in charge magnitude substantially influenced migration, generating localized high-accumulation zones, especially when Q=400e and Q=600e. Voltage, microgravity, and charge magnitude exert synergistic constraint effect on the debris migration behavior, with non-uniform accumulation zones more likely forming under low-voltage and high-microgravity conditions. This study reveals the dominant mechanisms governing debris migration and enrichment in typical space environments and provides theoretical support for optimizing operational parameters and improving on-orbit reliability of conductive slip rings.
关键词
导电滑环 /
空间环境 /
磨屑迁移 /
多物理场协同作用 /
磨屑堆积特性
Key words
conductive slip ring /
space environment /
wear debris migration /
multiphysics interaction /
debris accumulation characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘兴富, 朱野, 刘会杰, 等. 星载长寿命导电滑环的传输可靠性评估[J]. 光学精密工程, 2019, 27(9): 2028-2035.
LIU X F, ZHU Y, LIU H J, et al.Study on Transmission Reliability of Long Life Space Electric Slip Ring[J]. Optics and Precision Engineering, 2019, 27(9): 2028-2035.
[2] 刘自立, 贾海鹏, 王立, 等. 面向空间应用的新型滚动汇流环关键技术与启示[J]. 航天器环境工程, 2016, 33(1): 72-76.
LIU Z L, JIA H P, WANG L, et al.The Key Technologies of Novel Roll-Ring for Space Applications[J]. Spacecraft Environment Engineering, 2016, 33(1): 72-76.
[3] 孙远航, 王永松, 孙习武, 等. 航天用导电滑环失效建模与工艺优化研究[J]. 机械工程学报, 2020, 56(16): 1-12.
SUN Y H, WANG Y S, SUN X W, et al.Research on Failure Modeling and Process Optimization of Transmission Conductive Slip Ring for Aerospace[J]. Journal of Mechanical Engineering, 2020, 56(16): 1-12.
[4] 董霖. 载流摩擦磨损机理研究[D]. 成都: 西南交通大学, 2008.
DONG L.Study on Friction and Wear Mechanism of Current-Carrying[D]. Chengdu: Southwest Jiaotong University, 2008.
[5] 董霖, 陈光雄, 周仲荣. 载流摩擦磨损系统研究[J]. 润滑与密封, 2009, 34(7): 102-106.
DONG L, CHEN G X, ZHOU Z R.Research on the System of Friction and Wear with Electric Current[J]. Lubrication Engineering, 2009, 34(7): 102-106.
[6] 李超, 周世雄. 空间汇流环的探讨[J]. 电子机械工程, 2001, 17(2): 16-19.
LI C, ZHOU S X.The Discussion on the Slip-Ring in Aerospacecraft[J]. Electro-mechanical Engineering, 2001, 17(2): 16-19.
[7] 王同奔. 太阳帆板驱动机构内部磨屑颗粒荷电及运动迁移规律研究[D]. 北京: 北京交通大学, 2023.
WANG T B.Study on the Charging and Movement and Migration of Abrasive Particles in the Driving Mechanism of Solar Panels[D]. Beijing: Beijing Jiaotong University, 2023.
[8] 张强, 张可墨, 刘继奎, 等. 空间导电滑环技术研究与发展综述[J]. 机械工程学报, 2022, 58(22): 334-348.
ZHANG Q, ZHANG K M, LIU J K, et al.Overview of Research and Development on Space Slip Rings[J]. Journal of Mechanical Engineering, 2022, 58(22): 334-348.
[9] JAWORSKE D, SIAMIDIS J.Overview of Materials International Space Station Experiment 7B[C]// 50th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs, California. Reston, Virginia: AIAA, 2009: 2687.
[10] EVESQUE P, ADJÉMIAN F. Stress Fluctuations and Macroscopic Stick-Slip in Granular Materials[J]. The European Physical Journal E, 2002, 9(3): 253-259.
[11] DING T, CHEN G X, ZHU M H, et al.Influence of the Spring Stiffness on Friction and Wear Behaviours of Stainless Steel/Copper-Impregnated Metallized Carbon Couple with Electrical Current[J]. Wear, 2009, 267: 1080-1086.
[12] 李超, 王学强, 戴飞, 等. 空间滑环磨屑特征与可靠性设计[J]. 电子产品可靠性与环境试验, 2018, 36(2): 1-5.
LI C, WANG X Q, DAI F, et al.The Debris Characteristics and Reliability Design of Aerospace Slip Ring[J]. Electronic Product Reliability and Environmental Testing, 2018, 36(2): 1-5.
[13] RADWAN R M, MORSI R, ABD-ALLAH M A. Motion of Free Conducting Particles in SF/Sub 6/ Insulated Systems under Dc Switching Voltages[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(1): 25-30.
[14] WANG J, LI Q M, LI B T, et al.Motion Analysis of Spherical Metal Particle in AC Gas-Insulated Lines: Random Effects and Resistance of the SF6/N2 Mixture[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2617-2625.
[15] XIE X L, ZHANG L, XIAO J K, et al.Sliding Electrical Contact Behavior of AuAgCu Brush on Au Plating[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(9): 3029-3036.
[16] 王华庆, 陈琪. 导电环内部磨屑运动迁移规律分析[J]. 电子世界, 2014(14): 432-433.
WANG H Q, CHEN Q.Analysis of Movement and Migration Law of Debris in Conductive Ring[J]. Electronics World, 2014(14): 432-433.
[17] 吴正婕. 太阳帆板驱动机构内导电环磨屑颗粒运动迁移特性分析[D]. 北京: 北京交通大学, 2020.
WU Z J.Analysis of Movement and Migration Characteristics of Conductive Ring Debris Particles in Solar Array Driving Mechanism[D]. Beijing: Beijing Jiaotong University, 2020.
[18] 张淑敏, 刘继奎, 周刚, 等. 航天器用导电滑环磨屑在轨运动特性分析[J]. 空间科学与试验学报, 2025, 25(1): 21-28.
ZHANG S M, LIU J K, ZHOU G, et al.On-Orbit Motion Characteristic Analysis of Grinding Debris Inside Conductive Slip Rings of Spacecraft[J]. Journal of Space Science and Experiment, 2025, 25(1): 21-28.